If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+15x+15=0
a = 2; b = 15; c = +15;
Δ = b2-4ac
Δ = 152-4·2·15
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{105}}{2*2}=\frac{-15-\sqrt{105}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{105}}{2*2}=\frac{-15+\sqrt{105}}{4} $
| w-21.77=-14.77 | | 37x+32=439 | | 4=5x=-4=x | | 50=–6x+4x–8 | | x+2/4=x+5/3 | | 4.25w=29.75 | | 4.5w=29.75 | | 5x=16=15x-94 | | (x+12)+x+100=180 | | -36-10z=62 | | -8−9u=-10u | | (x+12)=100+x | | 14-2=-6u=28 | | 4=13v-9v | | 100x/20+500/20=1 | | j=2j−7 | | 100x+500/20=1 | | -2+2p=4+5p | | 5x=1,065 | | m+3m-12=16 | | 0.1(5x+20)-5=0.25(2x+8)1x | | 11c-4=2c+5 | | 5+c+c=9 | | 12(3a+2)=-8 | | 4z/9+1=8 | | 8x-23+x=16+29x-9 | | 2(x-2)+1=2(x+4)+x+13 | | 1.5+s=2.25s | | 3(m-27)=-6m | | 8q+8=6q+20 | | (3x)+(x+96)=180 | | -2m+-14=-22 |